~

rr/l'}l ‘I/I\I
ERNEST ORLANDO LAWRENCE
BERKELEY NATIONAL LABORATORY

Smart buildings with electric vehicle
interconnection as buffer for local renewables?

Michael Stadler, Gongcalo Cardoso, Nicholas DeForest, Jon
Donadee, Tomaz Gomez, Judy Lai, Chris Marnay, Olivier Mégel,
Gongalo Mendes, and Afzal Siddiqui

Environmental Energy
Technologies Division

presented at Researching the Intelligent City:
Key Challenges of Integrating Urban Energy and Mobility
Systems Research Symposium, Berlin, May 30, 2011

http://eetd.Ibl.gov/EA/EMP/emp-pubs. html

The work described in this presentation was funded by the Office of Electricity Delivery and
Energy Reliability, Distributed Energy Program of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231 and partly by NEC Laboratories America Inc.






Disclaimer

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither
the United States Government nor any agency thereof, nor The Regents of the
University of California, nor any of their employees, makes any warranty, express or
implied, or assumes any legal responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by its trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or any agency thereof, or The Regents of
the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or any agency
thereof, or The Regents of the University of California.

Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity
employer.






~

> ‘{ .,:rié%\ U.S. DEPARTMENT OF
¥ 24 ENERGY
freeeee |||‘ Rt

LAWRENCE BERKELEY NATIONAL LABORATORY

Smart buildings with electric vehicle
iInterconnection as buffer for local
renewables?

Michael Stadler

Goncalo Cardoso, Nicholas DeForest, Jon Donadee, Tomaz Gomez, Judy Lai,
Chris Marnay, Olivier Mégel, Goncalo Mendes, Afzal Siddiqui

Researching the Intelligent City:
Key Challenges of Integrating Urban Energy and Mobility Systems
Research Symposium, Berlin, May 30, 2011
MStadler@lbl.gov http://der.lbl.gov/

) The work described in this presentation was funded by the Office of Electricity Delivery and Energy Reliability, Distributed
Energy Program of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and partly by NEC Laboratories
America Inc.

: / ' Years of World Glas
Science
ERXELEY LAB. 1931-2006

A R
ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY is a U.S. Department of Energy National Laboratory operated by the University of California




Outline

O Lawrence Berkeley National Laboratory
O are we considering both sides of the coin?

O Lawrence Berkeley National Laboratory’s Distributed Energy
Resources Customer Adoption Model (DER-CAM)

O Web-Optimization, software as service for a University building

O Example result for a University building and electric vehicle
(EV) modeling
How does the number of EVs connected to the building change
with different optimization goals (cost versus CO,) ?

O conclusions
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Lawrence Berkeley National Lab

O Located in the San Francisco Bay Area

O Berkeley Lab was founded in 1931 by Ernest Orlando
Lawrence, a physicist who won the 1939 Nobel Prize in
physics for his invention of the cyclotron

O Berkeley Lab is a member of the U.S. laboratory system
supported by the U.S. Department of Energy and attached to
the University of California (UC) Berkeley and is charged with
conducting unclassified research across a wide range of
scientific disciplines in 23 divisions as Accelerator & Fusion
Research, Physics, Environmental Energy Technology, etc.

O 4 200 scientists, engineers, support staff and students
O budget of $811 million in 2010
o eleven Nobel Prizes
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Are we considering both sides of the coin?§{

& mobile and local storage can absorb renewable energy in
principle

‘@ mobile storage can be linked in principle to commercial
and residential buildings and integrated in smart buildings

8 Is it that simple or does the research community simplify?

@ How will a building optimize its energy usage without
..., Knowing its hourly consumption? Smart meters?

@ Do we have the proper communication and data
.., Infrastructure to optimize buildings?

& What are the incentives for building owners to integrate
renewables and electric vehicles?

orld-Clas:
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Complex research problems

6 Is it that simple or does the research
community simplify?
Yes, too simple. Complex interactions
between competing decentralized
technologies are neglected mostly.

The Distributed Energy Resources
Customer Adoption Model
(DER-CAM)
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DER-CAM

O is a deterministic Mixed Integer Linear Program (MILP),
written in the General Algebraic Modeling System (GAMS®)

O minimizes annual energy costs, CO, emissions, or multiple
objectives of providing services to a building micro-/smartgrid

O produces technology neutral pure optimal results, delivers
iInvestment decision and operational schedule

O has been designed for more than 9 years by Berkeley Lab
and collaborations in the US, Germany, Spain, Portugal,
Belgium, Japan, and Australia

O first commercialization and real-time optimization steps, e.g.
Storage & PV Viability Optimization Web-Service (SVOW),
http.://der.Ibl.gov/microgrids-lbnl/current-project-storage-
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Hourly demand

& How will a building optimize its energy
usage without knowing its hourly
consumption?

It can hardly optimize its energy usage and

models for estimating the hourly
consumption are needed.
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Data

a Do we have the proper communication
and data infrastructure to optimize
buildings?

Projects performed in the U.S. and ongoing
research in Europe indicate that we do not
have the proper infrastructure and data
collection in place.
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Optimization over the web

Web-Optimization to provide a
simple optimization platform, which
also forecasts loads for the building

gl Environmental Energy Technologies Division 10
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European project EnRiMa’)

» Thermal load

Building configuration:

More information at: http://www.enrima-project.eu/

*) Energy
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+ Risk management
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+ ... future needs

External data: Forecasting: « Retrofit decisions bt
« Market price « Market price « Financial positions
» Weather » Thermal load

« Electrical load

* DER equipment

For example: test sites in Austria do not collect hourly loads and energy
management system (EMS) data. Reason: no priority on energy saving or
no idea how to use the data - web-optimization service
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Costs versus CO,

& What are the incentives for building
owners to integrate renewables and
electric vehicles?

Example results for a University at Davis
Building and Electric Vehicle Modeling
for a Healthcare Facility in San Diego,

California
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Different optimization goals

Multi-objective frontier (minimize
the combination of costs and CO,
emissions for building)

in( (1 Cost N CO,emissons
min — )" :
) ReferenceCost @ ReferenceCO,emissons
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of Davis
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Multi-objective frontier / EVs connected @
healthcare facility
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Diurnal electric pattern for min cost @ healthcare
facility
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Diurnal electric pattern for point S4 @ healthcare
facility
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Conclusions

Conclusions for a Healthcare
Facility in San Diego

gl Environmental Energy Technologies Division 19




Conclusions

O EV Charging / discharging pattern mainly depends on the
objective of the building (cost versus CO,)

O performed optimization runs show that stationary batteries
are more attractive than mobile storage when putting more
focus on CO, emissions. Why? Stationary storage is
available 24 hours a day for energy management-> more
effective

O stationary storage will be charged by PV, mobile only
marginally

O results will depend on the considered region and tariff

- final research work will show the results for 138 different
buildings in nine different climate zones and three major utility
service territories

155
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End

Thank you!

Questions and comments are very
welcome.
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Ongoing EV modeling for California

The California Commercial End-Use
Survey (CEUS) Database
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CEUS
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Details for healthcare facility

2020 Equipment Options, Tariffs,
and Building Analyzed
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Equipment

O EVs belong to employees/commuters
O EVs can transfer energy to the building and vice versa

O the building energy management system (EMS) can manage
(charge/discharge) the EV batteries during connection hours

O EV owner receives exact compensation for battery
degradation and energy delivered to the building

EV-building connection period 8am — 5pm
EV-home connection period 7pm — 7am

EV battery state-of-charge (SOC) when arriving at the healthcare 73%
facilit

EV battery SOC when leaving the healthcare facility >3900/,

EV battery charging efficiency 95.4%
EV battery discharging efficiency 95.4%
EV battery capacity 16 kWh

Maximum EV battery charging rate 0.45 [1/h]

Years of World-Class
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Equipment

O also combined heat and power (CHP), PV, solar thermal,
stationary battery, etc. is considered in the analysis

O technology costs in 2020 are based on “Assumptions to
the Annual U.S. Energy Outlook”, e.g.
> fuel cell with heat exchanger: $2220 - $2770/kW,
lifetime: 10 years

> internal combustion engine with heat exchanger: $2180
- $3580/kW, lifetime: 20 years

> PV: $3237/kW, lifetime: 20 years
> stationary battery: $193/kWh
> efc.

Details can be found at “The CO, Abatement Potential of California’s Mid-Sized Commercial Buildings.”
Michael Stadler, Chris Marnay, Gongalo Cardoso, Tim Lipman, Olivier Mégel, Srirupa Ganguly, Afzal
Siddiqui, and Judy Lai, California Energy Commission, Public Interest Energy Research Program, CEC-
500-07-043, 500-99-013, LBNL-3024E, December 2009.

27
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Building / tariffs

O electricity and gas loads for a San Diego healthcare facility
are based on CEUS

» peak electric demand: 399 kW
» annual electricity demand: 2.33 GWh

» annual natural gas consumption: 2.13 GWh (72700
therm)

O TOU rates and demand charges:
> on-peak electricity up to 0.13 $/kWh
> off-peak rates around 0.09 $/kWh
» demand charges up to 12.8 $/kW-month

O electric rate at residences (homes) for EV charging:
$0.138/kWh

gl Environmental Energy Technologies Division 28




Details for healthcare facility

Optimization Results for Summer
Days

Optimal Investments in DER
Technologies and Operation,
Optimal EV Discharging / Charging
subject to different building
strategies
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Diurnal electric pattern for point S1 @ healthcare

faciltity
. . <EVsare used to reduce utility costs
. o during expensive peak hours
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Diurnal electric pattern for point S3 @ healthcare
facility
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High-level schematic of DER-CAM
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Representative MILP

Energy balance S | m pl |f|ed* Operational constraints
+energy purchase -generators, chillers, etc. must operate within
+energy generated onsite D E R'CAM performance limits
= onsite demand + energy sales d I -heat recovered is limited by generated waste heat
\ mode -solar radiation / footprint constraint
Objective function, e.g. min. annual energy /
bill for a test year:
+energy purchase costs Financial constraints
+amortized DER technology capital costs <4— | -max. allowed payback
+annual O&M costs period, e.g. 12 years
+ CO, costs
/ - energy sales \
£ 0

Regulatory constraints
-minimum efficiency requirement
-emission limits

Storage and DR constraints
-electricity stored is limited by battery size
-heat storage is limited by reservoir size

-GO, tax _ _ . - -max. efficiency potential for heating and
-CA min. eff. requirement for subsidy and (in future) feed-in tariff electricity
\-ZNEB J

*does not show all constraints
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